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Loss-of-function yeast phenotypes<p>Loss-of-function phenotypes of yeast genes can be predicted from the loss-of-function phenotypes of their neighbours in functional gene networks. This could potentially be applied to the prediction of human disease genes.</p>

Abstract

We demonstrate that loss-of-function yeast phenotypes are predictable by guilt-by-association in
functional gene networks. Testing 1,102 loss-of-function phenotypes from genome-wide assays of
yeast reveals predictability of diverse phenotypes, spanning cellular morphology, growth,
metabolism, and quantitative cell shape features. We apply the method to extend a genome-wide
screen by predicting, then verifying, genes whose disruption elongates yeast cells, and to predict
human disease genes. To facilitate network-guided screens, a web server is available http://
www.yeastnet.org.

Background
Geneticists have long observed that mutations that lead to the
same organismal phenotype are typically functionally related,
and have interpreted epistatic relationships between genes as
genetic pathways and more recently as gene networks. In the
post-genomic period, an abundance of high-throughput data
has encouraged the construction of functional networks [1],
which integrate evidence from a wide variety of experiments
to infer functional relationships between genes. Historically,
mutations that lead to the same phenotype were inferred to be
functionally linked; now, with extensive functional networks,
we ask whether the inverse is also true. If gene loss-of-func-
tion phenotypes could be successfully inferred on the basis of
linkages in functional gene networks, then this would enable
the directed extension of genetic screens and open the possi-
bility to apply similar approaches in humans for the direct
identification of disease genes.

In particular, important advances over the past decade in
both forward and reverse genetics mean that such predicta-

bility could be exploited in a straightforward manner to asso-
ciate specific genes with phenotypes. In terms of forward
genetics, genome-wide association studies (for review, see
[2]) are showing great power for identifying candidate genes
associated with human traits and diseases, such as recent
studies correlating variants in the ORMDL3 gene with risk for
childhood asthma [3]. In terms of reverse genetics, rapid test-
ing of candidate genes has become more routine because of
availability of mutant strain collections (for example, yeast
deletion strain collections [4,5]) as well as the relative ease of
RNA interference downregulation of genes (as, for instance,
for genome-wide RNA interference screens of
Caenorhabtidis elegans [6,7] or human cell lines; for review
[8]). The prediction of loss-of-function phenotypes would
bridge these two aspects of genetics; given an initial set of
genes associated with a phenotype of interest, such as might
come from either forward or reverse genetics, computational
predictions of additional genes associated with that pheno-
type might be rapidly tested using reverse genetics, thereby
extending the original screen. Most importantly, because
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many traits are multifactorial in nature, often based upon
contributions from many genes, such approaches might help
in defining networks of genes that affect a trait of interest. The
potential for discovering such polygenic contributions to
traits appears to be particularly strong when one considers
the prediction of phenotypes directly from functional gene
networks.

Functional linkages - statistical associations between pairs of
genes that are likely to participate in the same cellular path-
way or process - have shown great general power for generat-
ing hypotheses about gene function, in spite of their
apparently nonmechanistic nature (for examples, see [9-18]).
In a probabilistic functional gene network, each linkage in the
network is scored with the likelihood of the linked genes
belonging to the same pathway [13,16,17]. The accuracy and
coverage of these networks depends on the integration of
multiple data sources (protein interactions, DNA microar-
rays, literature mining, and so on) that have each been inde-
pendently shown to link similarly annotated genes; the
combination of many such datasets means that the networks
often extend well beyond current annotation. Such networks
have therefore been extensively applied to infer gene func-
tion, such as by predicting an uncharacterized gene's function
on the basis of its network neighbors (for examples, see
[9,13,15,19-22]). Because genes linked in these networks tend
to be in the same pathway, it is reasonable also to expect
linked genes to often share loss-of-function phenotypes.

In this report we show proof-of-principle that genes linked in
a functional network are indeed likely to give rise to the same
loss-of-function phenotype, demonstrating efficacy for pre-
dicting yeast mutant phenotypes. Diverse yeast gene loss-of-
function phenotypes are shown to be predictable, from bio-
chemical to morphologic to fitness effects. The approach we
describe therefore provides a rational and quantitative foun-
dation for targeted reverse genetic studies, as we demonstrate
by predicting, then verifying, essential genes whose disrup-
tion produces elongated yeast cells. The breadth of applicabil-
ity suggests that this approach might ultimately be valuable if
it is implemented in humans to identify genes that are likely
to lead to human disease, exploiting extensive functional
genomics data and sets of known disease genes in order to
identify directly new candidate disease genes.

Results
Guilt-by-association in a functional gene network 
predicts yeast gene essentiality
In order to predict phenotypes, we took advantage of an
established principle for inferring gene function from net-
work connections, the principle of guilt-by-association
(GBA). In GBA the function of uncharacterized genes is
inferred from the functions of characterized neighbors in the
network [9,21,23] (for review, see [19]). We employed GBA to
consider whether the genes linked to a seed set of genes asso-

ciated with a particular loss-of-function phenotype might also
be more likely to result in the same phenotype upon disrup-
tion (Figure 1). For these analyses, we employ the most recent
version (v. 2 [24]) of the probabilistic yeast functional gene
network reported by Lee and coworkers [17]. This network
describes 102,803 functional linkages among 5,483 yeast
genes, each linkage scored with a probabilistic score captur-
ing the tendency of the genes to share Gene Ontology (GO)
'biological process' annotation [24] versus prior expectation.
Using this network, genes are rank ordered by the strengths
of their linkages to the seed set; the genes linked most
strongly to the seed set would therefore be considered candi-
dates for leading to the same phenotype.

We first investigated whether the network could distinguish
viable from nonviable yeast gene deletion strains. Essential
genes of both yeast and humans are known to be more highly
connected in protein physical interaction networks than non-
essential genes [25-27], and there is evidence that essential
proteins may also be enriched in the same physical complexes
[28,29]. We considered whether essential genes could be pre-
dicted on the basis of their connections to other essential
genes in a functional gene network. We employed the GBA
approach, using as the seed set the 1,027 known essential
yeast genes [4,30] and then scoring each gene in yeast for its
likelihood to be essential as a function of connectivity to this
seed set. Each gene in the seed set was withheld in turn from
the seed set in order to evaluate it (performing leave-one-out
cross-validation). As the prediction score for each gene, we
calculated the sum of the weights of linkages connecting the
query gene to genes in the seed set. Given that each linkage's
weight in this network corresponds to the log likelihood of the
linked genes belonging to the same pathway [24], the sum of
linkage weights therefore represents the naïve Bayesian com-
bination of evidence that the query gene belongs to the same
pathway as the seed set genes. We expect genes in the same
pathway often to exhibit the same loss-of-function pheno-
types. Thus, this score should also serve to identify genes that
share phenotypes with the seed set genes.

To evaluate prediction quality, we calculated the true positive
rate (sensitivity: TP/[TP + FN]) and the false positive rate (1
- specificity: FP/[FP + TN]), as a function of the prediction
score, plotting the resulting receiver operating characteristic
(ROC) curve. (The terms TP, FN, FP and TN mean true posi-
tives, false negatives, false positives and true negatives,
respectively.) As Figure 2 shows, the essential genes are
strongly predictable on the basis of their network neighbors.
Therefore, in addition to the previous observations that
essential genes have larger numbers of physical interaction
partners, we demonstrate that essential yeast genes are also
preferentially connected to each other in a functional
network.
Genome Biology 2007, 8:R258
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A yeast gene network predicts varied, specific loss-of-
function phenotypes
Although prediction of essential genes is useful (for example,
for prioritizing knockout experiments or drug targets), there
is far more utility in predicting highly specific phenotypes.
Saccharomyces cerevisiae has been richly characterized,
with a large number of systematically collected phenotypes,
assayed across all (or, more typically, all nonessential) genes
by taking advantage of yeast deletion strain collections [4,5].
In these collections, a single yeast gene is deleted in each yeast
strain; a phenotypic assay on the complete set of knockout
strains thereby associates that phenotype with those deleted
genes that gave rise to it. These screens are ideal for address-
ing the general question of whether specific loss-of-function
phenotypes are predictable. Importantly, the yeast gene net-
work was neither trained on such data, and neither were phe-
notypic data incorporated into the network [24]. These sets
are therefore fully independent test sets, and we could thus
employ these data to evaluate the capacity of a gene network
to predict loss-of-function phenotypes.

We assembled a set of 100 nonredundant phenotypes, either
reported in the Saccharomyces Genome Database (SGD [31])

or in one of 32 additional publications in the literature (listed
in full in Table 1). We evaluated each of the phenotypes for
network-based predictability using ROC analysis, as shown
for several examples in Figure 2. Specifically, we used hits
from these screens as seed sets for predicting the associated
phenotypes from the yeast network, performing leave-one-
out cross-validation, just as for the prediction of essential
genes. In order to evaluate the overall trends in these data, for
each of the 100 ROC curves we calculated the area under the
curve (AUC) as a measure of prediction strength; an AUC
value of 0.5 indicates random performance, whereas an AUC
value of 1.0 indicates perfect predictions. We find that a
majority of phenotypes are reasonably predictable (Figure 3),
with 70% of the phenotypes predictable at AUC above 0.65. In
contrast, none of 100 random gene sets of the same sizes as
the actual phenotypic seed sets exhibited AUC above 0.65.
The AUC of the highest scoring random set was 0.64, which
indicates that phenotypes with AUC above 0.65 were signifi-
cant to at least P < 0.01.

The most strongly predictable phenotypes vary widely in spe-
cificity and character. For example, we observed strong pre-
dictability for genes whose disruption leads to shortened

Overview of guilt-by-association phenotype predictionFigure 1
Overview of guilt-by-association phenotype prediction. Guilt-by-association phenotype prediction employs a functional gene network, represented here as 
circles (genes) connected by lines (functional linkages), and a seed set of genes (blue filled circles) whose disruption is known to give rise to the phenotype 
of interest. Neighboring genes in a functional gene network (red filled circles) are candidates for also giving rise to the phenotype. Candidates are 
prioritized by the sum of their network linkage weights to the set of seed genes. A gene strongly linked to multiple seed genes will thus rank more highly 
than a gene weakly linked to a single seed gene. Networks in Figures 1, 5, and 7 were drawn with Cytoscape [73].
Genome Biology 2007, 8:R258
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telomeres [32], causes chitin accumulation [33], or increases
secretion of the vacuolar protein carboxypeptidase Y [34].
Even gross cellular morphologies (small cells, round cells,
and so on) are somewhat predictable, as are far more specific
phenotypes, such as increased iron uptake [35] and caspofun-
gin sensitivity [36]. Surprisingly, there is little dependence of
predictability on the size of the seed set (Figure 4), and we
observed strong predictability for both large and small seed
sets (for example, bleomycin resistance [37] [four genes, AUC
= 0.87] versus nonviability/essential [4,30] [1,027 genes,
AUC = 0.85]).

Integration of functional genomics and proteomics 
data is important for phenotype prediction
Because physically interacting proteins often share related
genetic interaction partners (for examples, see [38,39]) and
even human disease associations [25,40,41], it seemed likely
that physical protein interactions might account for a large
fraction of the signal we observe. In particular, Lage and cow-

orkers [40] used GBA among protein complexes to predict
disease genes within human genetic linkage groups. Balanc-
ing this trend, phenotypes of annotated genes are in part pre-
dictable directly from their functional annotations [42]. Thus,
we considered whether the integration of functional genomics
and proteomics data in the functional network yielded addi-
tional predictive power over physical interactions alone. We
measured the median AUC across the 100 phenotypes for the
functional yeast gene network and for each of several pub-
lished versions of the yeast protein physical interaction net-
work [29,43-45]. We compared these values with the median
fraction of each seed gene set covered by the respective net-
works. The values of AUC and fraction covered therefore
serve as measures of precision and recall for each network.

As Figure 5 demonstrates, we observe that all networks pre-
dict loss-of-function phenotypes to some extent, but find the
functional network to predict phenotypes at a significantly
higher precision and recall. We attribute this enhanced per-
formance to the increased comprehensiveness of the

Diverse yeast gene loss-of-function phenotypes are predictable using guilt-by-association in a functional gene networkFigure 2
Diverse yeast gene loss-of-function phenotypes are predictable using guilt-
by-association in a functional gene network. Predictability is measured in a 
receiver operating characteristic plot of the true positive rate (sensitivity) 
versus false positive rate (1 - specificity) for predicting genes giving rise to 
ten specific loss-of-function phenotypes, as well as for essential genes 
whose disruption produces nonviable yeast [4]. For each phenotype, each 
gene in the yeast genome was prioritized by the sum of the weights of its 
network linkages to the seed genes associated with the phenotype. Genes 
with higher scores are more tightly linked to the seed set and therefore 
more likely to give rise to the phenotype. Each phenotype was evaluated 
using leave-one-out cross-validation, omitting genes from the seed set for 
the purposes of evaluation. More predictable phenotypes tend toward the 
top-left corner of the graph; random predictability is indicated by the 
diagonal. For clarity, the line connecting the final point of each graph to the 
top right corner has been omitted. FN, false negative; FP, false positive; 
TN, true negative; TP, true positive.
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Loss-of-function phenotypes are predicted significantly better than 
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Table 1

Predictability of 100 yeast gene deletion phenotypes

Phenotypea AUC Seed genes with phenotype (n) Seed genes in network (n) Ref.

Caspofungin sensitive 0.996 20 18 [36]

Increased resistance to calcofluor white 0.982 10 10 [33]

Unipolar budding 0.941 10 10 [68]

CPY secretion (3) 0.937 46 44 [34]

Cell cycle arrest defective 0.930 8 8 [74]

UVC sensitive (high) 0.919 15 14 [75]

Sensitivity at 15 generations in galactose 0.908 17 14 [4]

CANR mutator (high) 0.904 18 18 [76]

Haploinsufficient in rich medium (YPD) 0.898 184 184 [77]

Cellular chitin level increased (3) 0.873 22 21 [33]

Bleomycin resistant (3) 0.871 5 4 [37]

Morphology: branched (diploid) 0.870 5 5 [4]

Sensitivity at 15 generations in 1.5 M sorbitol 0.867 6 4 [4]

Caspofungin resistant 0.866 8 8 [36]

Inviable (essential) 0.845 1100 1027 [4,30]

Shortened telomeres (3) 0.843 20 18 [32]

Sensitivity at 15 generations in minimal +his +leu +ura medium 0.843 77 70 [4]

MMS sensitive (3) 0.837 78 73 [78]

Cellular chitin level reduced (2) 0.835 17 17 [33]

Petite 0.833 179 166 [79]

Sensitivity at 5 generations in minimal +his +leu +ura medium 0.827 62 51 [4]

Long telomeres (3) 0.824 6 6 [32]

Decreased calcofluor white resistance 0.814 65 63 [77,80]

Growth defect on a fermentable carbon source 0.812 257 249 [81]

Transposon cDNA expression changed (high) 0.810 27 26 [82]

Morphology: clumpy (3)(diploid) 0.802 18 18 [4]

Gamma radiation sensitive (3) 0.793 31 31 [83]

Cell cycle arrest defective and defective shmoo 0.782 30 29 [74]

Sensitivity at 5 generations in galactose 0.781 11 10 [4]

Small (haploid) 0.778 215 192 [84]

Retrotransposition reduced 0.772 99 89 [82]

K1 killer toxin sensitive (40%) 0.770 72 72 [80]

Increased iron uptake 0.757 76 70 [35]

Growth defect on a non-fermentable carbon source 0.755 498 448 [81]

Gentamycin sensitive (high) 0.754 11 11 [85]

Proteasome inhibitor sens (high) 0.753 22 22 [86]

Reduced fitness in rich medium (YPD) 0.748 891 872 [77]

Mycophenolic acid sensitive 0.746 38 33 [87]

Axial budding 0.745 4 4 [68]

Morphology: elongate (3) (diploid) 0.739 77 73 [4]

Sporulation deficient 0.738 261 244 [88]

Random budding (high) 0.737 74 72 [68]

Large (haploid) 0.728 227 205 [84]

Reduced sporulation (3) (normal respiration) 0.722 136 119 [89]

Bleomycin sensitive (4) 0.721 58 55 [37]

Sensitivity at 5 generations in synthetic complete - lys medium 0.715 23 22 [4]

Decreased rapamycin resistance 0.707 272 256 [90]

Whi 0.706 19 19 [79]

Sensitivity at 5 generations in 1.5 M sorbitol 0.704 13 11 [4]

Decreased wortmannin resistance 0.703 89 85 [90]
Genome Biology 2007, 8:R258
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Sensitivity at 20 generations in 1 M NaCl 0.703 63 59 [4]

K1 killer toxin resistant (40%) 0.698 19 18 [80]

Morphology: round (3) (diploid) 0.696 105 99 [4]

Uge 0.694 28 26 [79]

Sensitivity at 5 generations in synthetic complete - trp medium 0.694 48 45 [4]

Sensitivity at 5 generations in 1 M NaCl 0.693 60 56 [4]

Rapamycin resist (2) 0.692 26 26 [91]

Reduced iron uptake 0.688 5 5 [35]

Rate of growth loss of growth in 0.85 M NaCl 0.682 212 189 [92]

Sensitivity at 5 generations in medium of pH 8 0.677 102 93 [4]

Sensitivity at 15 generations in medium of pH 8 0.676 128 115 [4]

Morphology: small (3)(diploid) 0.672 79 69 [4]

Sensitivity at 15 generations in 10 uM nystatin 0.672 28 27 [4]

Morphology: large (3)(diploid) 0.669 88 80 [4]

Reduced glycogen storage (2) 0.666 44 41 [93]

Sensitivity at 5 generations in 10 uM nystatin 0.666 124 108 [4]

Increased rapamycin resistance 0.662 114 100 [90]

Morphology: unusual shmoo (haploid) 0.661 29 25 [74]

Morphology: polarized bud growth (haploid) 0.657 5 5 [74]

Wortmannin resistant (5) 0.656 25 23 [94]

Sensitivity at 5 generations in synthetic complete - thr medium 0.647 31 29 [5]

Enhanced glycogen storage (2) 0.645 61 55 [93]

Proteasome inhibitor resistant 0.642 7 6 [86]

Reduced spores per ascus 0.641 37 34 [89]

Rate of growth sensitivity in 0.85 M NaCl 0.629 209 191 [92]

Morphology: football (3) (diploid) 0.628 59 53 [5]

Germination deficient 0.627 158 147 [88]

Sporulation promoting 0.622 102 98 [88]

6AU sensitive (3) 0.618 28 26 [95]

Increased wortmannin resistance 0.617 80 75 [90]

Morphology: elongated (haploid) 0.603 110 101 [74]

Rapamycin sensitive (4) 0.597 20 20 [91]

Efficiency of growth sensitivity in 0.85 M NaCl 0.597 65 58 [92]

Decreased rapamycin resistance 0.597 8 7 [90]

Slow growth in YPD (16× below WT) 0.585 23 22 [4]

MPA sensitive (3) 0.563 24 22 [95]

Morphology: round (haploid) 0.552 13 11 [74]

Efficiency of growth resistance in 0.85 M NaCl 0.541 44 40 [92]

Sensitivity at 5 generations in synthetic complete medium 0.531 88 78 [5]

Morphology: large (haploid) 0.527 23 21 [74]

Adaptation time loss of growth in 0.85 M NaCl 0.526 103 91 [92]

Adaptation time sensitivity in 0.85 M NaCl 0.521 284 259 [92]

Decreased sensitivity to the anticancer drug, cisplatin 0.512 22 19 [96]

Morphology: chain (diploid) 0.485 5 5 [5]

Morphology: small (haploid) 0.480 94 89 [74]

Rate of growth resistance in 0.85 M NaCl 0.479 59 49 [92]

Morphology: clumped (haploid) 0.479 32 28 [74]

Adaptation time resistance in 0.85 M NaCl 0.465 69 60 [92]

Efficiency of growth loss of growth in 0.85 M NaCl 0.464 23 21 [92]

Morphology: pointed (haploid) 0.453 99 88 [74]

aNumbers in parentheses indicate threshold applied to generate seed set; for instance, '(3)' indicates '+++' or '---', as appropriate.

Table 1 (Continued)

Predictability of 100 yeast gene deletion phenotypes
Genome Biology 2007, 8:R258
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functional gene network, both in terms of additional types of
gene associations and more extensive coverage of the overall
set of yeast genes. The functional network accomplishes this
by incorporating other sources of functional interaction (for
example, mRNA co-expression) in addition to physical inter-
actions from both small-scale (for example, the Database of
Interacting Proteins [DIP] and Munich Information Center
for Protein Sequences [MIPS] databases) and genome scale
(for example, mass spectrometry of affinity-purified protein
complexes and yeast two hybrid) experiments. Furthermore,
as shown in Figure 6, the sequential addition of progressively
lower confidence functional linkages increases both predic-
tive accuracy and coverage. Low confidence linkages do not
undercut the predictive power of high confidence linkages
because they are weighted in proportion to the strength of the
evidence that supports them. These observations highlight
the importance of integrating diverse data types into gene

networks for the purposes of predicting phenotypes and sug-
gest that the proteins encoded by genes associated with the
same phenotype often may not physically interact.

Extending a genetic screen by network-guided reverse 
genetics
For organisms in which reverse genetics is feasible, the obser-
vation that phenotypes can be predicted from network con-
nectivity opens the possibility of extending genetic screens in
a directed manner. That is, when in possession of a set of
genes known to give rise to a phenotype of interest, rather
than randomly screening to identify additional genes, one
could instead exploit the predictability of phenotypes by
directly screening genes that are most strongly connected to
the known set in the network. In this manner, experiments
could be focused on the genes that are most likely to give rise
to the phenotype. We tested this notion for yeast genes whose
disruption gives rise to a simple cell morphology defect, the
formation of elongated yeast cells. Across the complete set of
nonessential genes, 145 genes (3.3%) have been identified
that give rise to elongated morphologies in homozygous dip-
loid deletion strains, of which 77 genes (1.7%) show a strong
phenotype [4]. We selected these 77 genes as a seed set and
found the phenotype to be reasonably predictable from the
network using ROC analysis (AUC = 0.74). Because the com-
plete set of nonessential genes was previously screened for
cell morphology defects [4,46], we instead considered which
essential genes were most strongly linked to the seed set,
selecting the top-ranked 35 essential genes for further evalu-
ation, and tested 33 of these strains. We examined condi-
tional loss-of-function strains for elongated cell
morphologies, performing light microscopy of yeast strains
carrying tetracycline downregulatable alleles for each candi-
date gene [47]. Sixteen (about 48%) of the 33 tested were
elongated, as shown for several examples in Figure 7. As
negative controls, we tested 17 strains carrying tetracycline
downregulatable essential genes that were chosen for being
unlinked in the functional network to the seed set. One nega-
tive control strain also scored as elongated; this strain had
also been previously identified as such by Mnaimneh and
coworkers [47]. The results represent an eightfold improve-

A plot of seed set size versus predictability of the phenotype shows no significant correlationFigure 4
A plot of seed set size versus predictability of the phenotype shows no 
significant correlation. Thus, there does not appear to be an intrinsic 
limitation for applying network-guided reverse genetics even when seed 
set size is small. Each filled circle indicates the prediction strength (area 
under the receiver operating characteristic [ROC] curve, as calculated in 
Figure 3) of one of the 100 loss-of-function phenotypes relative to the 
number of genes in that seed set.
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Relative predictive power of functional and physical protein networksFigure 5 (see following page)
Relative predictive power of functional and physical protein networks. (a) Median values of predictive power (area under the receiver operating 
characteristic [ROC] curve [AUC]) across 100 loss-of-function phenotypes are plotted versus the median fraction of each seed gene set covered by a 
network (coverage; measured as the fraction of seed genes with at least one linkage in the network). Five networks are compared: the functional yeast 
network (YeastNet v. 2 [24]) and four versions of the network of yeast physical protein interactions (Database of Interacting Proteins [DIP] [45], 
Probabilistic Integrated Co-complex [PICO] [29], Munich Information Center for Protein Sequences [MIPS] physical complexes [44], and Collins and 
coworkers [43]). DIP, PICO, and YeastNet are each evaluated at two reported confidence thresholds. The YeastNet functional gene network shows 
considerably higher predictive power than for the networks composed only of physical interactions; the full YeastNet shows higher predictive power than 
a more confident core set of the top 47,000 linkages, indicating that the lower confidence linkages nonetheless add predictive power. Error bars indicate 
the first and third quartiles. Panels b and c show example seed gene sets (green circles) and their network connections, indicating functional linkages in 
grey lines, physical interactions in thin black lines, and both functional and physical interactions in thick black lines. (b) Genes whose deletion increases 
cellular chitin levels [33] (AUC = 0.87), whose prediction relies upon a mix of physical and functional interactions. (c) Genes whose deletion confers 
sensitivity at 5 generations in synthetic complete medium lacking threonine [4] (AUC = 0.65), whose prediction derives predominantly from functional 
linkages.
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Figure 5 (see legend on previous page)

0.0 0.2 0.4 0.6 0.8 1.0
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Random

DIP (full)
DIP (core)MIPS

Collins

(b)

(a)

(c)
Genome Biology 2007, 8:R258



http://genomebiology.com/2007/8/12/R258 Genome Biology 2007,     Volume 8, Issue 12, Article R258       McGary et al. R258.9
ment over the negative control set and a more than 15-fold
improvement over genome-wide screening, validating the
general strategy of network-guided genetic screening.

To gain further insight into the genes identified, we examined
the network connections among the seed genes and newly
identified genes giving rise to the elongated phenotype (Fig-
ure 7b). Strikingly, the genes associated with elongated yeast
cell morphology are strongly enriched for core transcriptional
functions (for example, they are significantly enriched for the
MIPS [48] annotation 'mRNA synthesis';P < 10-12 [49]), with
the set of newly identified genes predominantly belonging to
the RNA polymerase II mediator complex and associated
transcriptional machinery. In particular, the directed screen
identified the genes MED6, MED7 (confirming an earlier
observation reported by Boone and coworkers [47]), and
MED8, all of which are core components of the mediator
complex. It also identified the genes TAF1, TAF5, TAF9, and
TAF12, all of which are subunits of the TFIID and SAGA tran-
scriptional complexes, which are required for RNA polymer-
ase II transcriptional initiation. These findings highlight
another advantage of network-guided genetic screening;
because candidate genes are selected directly from the gene
network, functional connections are often already known
among the genes, helping to guide later interpretation of the
hits. The findings also highlight the often mysterious
relationship between an observed phenotype and the corre-

sponding molecular defect. The mechanism is unknown by
which defects in transcription initiation lead to elongated
cells; nonetheless, the relationship is robust enough that
genes whose disruption causes cell elongation can be cor-
rectly predicted.

Prediction of quantitative cell morphology phenotypes
Given that the phenotypes analyzed thus far are often based
on subjective criteria (judged to be elongated or not), it is
important to consider whether such predictions can be made
for quantitative phenotypes. We therefore examined quanti-
tative cell shape data that were recently systematically meas-
ured for the set of haploid MATa yeast deletion strains [46]. A
total of 281 quantitative features of cell shape, cellular, and
subcellular morphology were measured for each strain,
including such parameters as the ratio of long cell axis to
short cell axis, the angle between a mother cell and bud, and
the relative distribution of actin with regards to the bud posi-
tion. Each feature was measured for many cells from a given
strain, and the mean value reported. For 220 of the features,
the coefficient of variance (CV) was also reported, describing
the variability in that feature across single cells in that strain.
Considering the mean value of each feature and the CV as
separate traits (we refer to the former as morphology pheno-
types and the latter as CV phenotypes) means that a total of
501 cell shape measurements or CVs were reported for 4,718
strains, and made available through the S. cerevisiae Mor-
phology Database (SCMD) [50]. Because not all measurable
cell shape features are likely to be under selection (for exam-
ple, they might simply vary stochastically yet neutrally), we
do not expect all such phenotypes to correspond to functional
pathways and therefore be predictable. Nonetheless, we
might expect that a number of these would have functional
correlates and therefore be predictable. In order to test this
notion, we therefore evaluated each of the 501 features for
predictability using the functional gene network.

To generate seed gene sets from these data, for each of the 281
quantitative features we selected as phenotypic seed sets the
40 genes with the highest measured mean value of that fea-
ture and the 40 genes with the lowest measured mean value
of that feature, in all generating 562 morphology phenotype
seed gene sets (281 features × 2 seed sets each). We then eval-
uated each of these seed sets for predictability using ROC
analysis. As for the 100 genome-wide phenotypic screens, we
observed many strongly predictable cell morphology pheno-
types, such as those illustrated in Figure 8. For example, one
of the most strongly predictable cell morphology phenotypes
is for the genes whose disruption most increases cell elliptic-
ity during nuclear migration to the bud neck (AUC = 0.87).
Another strongly predictable phenotype is for deletion strains
showing the highest increase in the actin polarization of
unbudded cells (AUC = 0.80). We observe the overall set of
cell morphology phenotypes to be significantly more predict-
able than random expectation, as shown by comparison of the
distribution of AUC values with those derived from 1,000

Lower probability linkages continue to improve predictive accuracyFigure 6
Lower probability linkages continue to improve predictive accuracy. The 
continued improvement of predictions, albeit with diminishing returns, is 
shown in a plot of the predictive accuracy (median area under the receiver 
operating characteristic [ROC] curve across the 100 phenotypes, 
calculated as in Figure 3) versus median network coverage of the 100 
phenotype sets, as calculated for the top-ranked 20,000 (20 K), 40,000 (40 
K), 60,000 (60 K), 80,000 (80 K), and 100,000 (100 K) linkages in YeastNet 
v. 2. This trend derives from the fact that all links in this network have at 
least a 60% probability of linking genes in the same pathway. The 
probabilistic nature of the network means that low confidence linkages are 
unlikely to undercut high confidence linkages during phenotype prediction 
because the links are weighted according to the strength of the evidence 
supporting them. Error bars indicate the first and third quartiles.
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Network-guided extension of a genetic screenFigure 7
Network-guided extension of a genetic screen. Guilt-by-association (GBA) was applied to predict essential yeast genes whose disruption resulted in 
elongated yeast cells, based on the genes' network connectivity to a seed set of 77 nonessential genes already known to cause cell elongation when deleted 
[4]. (a) Five examples of successful predictions, observed in yeast strains carrying tetracycline downregulatable conditional alleles [47] of the essential 
genes TAF9, MED6, MED7, SWI1, and RPO21. In contrast, conditional downregulation of an unrelated essential gene, SCM3, caused no such cell elongation. 
(b) Sixteen out of 33 tested essential genes (yellow circles) showed elongated cell phenotypes on the basis of their connections to the seed set genes 
(green circles), with particular enrichment for genes associated with RNA polymerase II transcriptional initiation and the mediator complex. The color of 
the edge between two genes indicates the source of evidence supporting the functional link: thick black, multiple types of evidence; blue, affinity 
purification/mass spectrometry; green, literature mining by co-citation; cyan, gene neighbors or tertiary structure; pink, literature curated physical 
interaction; and red, genetic interaction.
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random seed sets of 40 genes each (Figure 9a). Note that pre-
dictability does not depend strongly on the size of the seed
sets; we see similar predictive power with seed sets of 10 to 80
genes (data not shown). These findings confirm that even
specific quantitative aspects of yeast cell shape often have
functional correlates, and therefore the sets of genes whose
disruption most affects such features are predictable.

Genes increasing cell-to-cell variation are less 
functionally coherent than those decreasing variation
Because the SCMD data include both morphology features
and measurements of their cell-to-cell variability, we consid-
ered more specifically whether the CV of a yeast morphology
phenotype across single cells in a population was itself a
predictable phenotype. Strikingly, we observed good
predictability for sets of genes whose disruption most
increased the CV of a given morphologic feature (for instance,
the 40 genes whose deletion caused the highest increase in
bud neck width CV; AUC = 0.70), but near random prediction
for sets of genes whose disruption most decreased the CV in a
given morphologic feature (for example, the 40 genes whose
deletion most reduced bud neck width CV; AUC = 0.54; Fig-
ure 9b). The high CV phenotypes are significantly more pre-
dictable than the low CV phenotypes (P < 0.0001, Wilcoxon
signed-ranks test). Across the 220 high CV phenotypes, we
observed 116 to exhibit significantly greater AUC values than
size-matched random sets (at the 95% confidence level, as
judged by Z-score > 1.95), whereas only 26 of the set of 220
low CV phenotypes were better than random at this level.

Because successful prediction of a loss-of-function phenotype
implies functional coherence of the genes - essentially reflect-
ing clustering of the genes in the functional network - this
result indicates that the genes whose disruption most
strongly reduced the CV in a given morphologic feature do not
in general form a functionally coherent set. By contrast, genes
whose disruption most increased morphologic phenotypic
variability were predictable, and thus functionally coherent.
We further observed that the same genes tended to be present
in the phenotypic sets from many different CV phenotypes;
namely, there are particular genes whose deletion increases
the CV of a large number of otherwise unrelated morphologic
properties.

Network-based prediction of quantitative cell morphology phenotypesFigure 8
Network-based prediction of quantitative cell morphology phenotypes. A 
wide variety of phenotypes based upon quantitative yeast cell shape and 
intracellular features [46] are predictable, as shown for the ten 
phenotypes in this receiver operating characteristic (ROC) analysis 
(selected from S. cerevisiae Morphology Database [SCMD] phenotypes 
with area under the ROC curve [AUC] > 0.68). For each of the features, 
the 40 genes whose deletion mutants show either the 40 highest or 40 
lowest values for that quantitative feature (indicated by 'high' or 'low', 
respectively) were selected as the seed gene set. Predictability was 
evaluated using ROC analysis as in Figure 2, plotting the true positive 
prediction rate versus false positive rate, using leave-one-out cross-
validation. For clarity, the line connecting the final point of each graph to 
the top right corner has been omitted. Labels of features are adapted for 
clarity from the SCMD [50]; the SCMD labels A, A1B, and C represent 
unbudded cells, budded cell with one nucleus in mother cell, and large-
budded post-mitotic cells with nuclei in both mother and daughter cell, 
respectively. Ratio measurements refer to proportions across a 
population of cells. FN, false negative; FP, false positive; TN, true negative; 
TP, true positive.
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Quantitative cell morphology phenotypes are predicted significantly better than random expectationFigure 9 (see following page)
Quantitative cell morphology phenotypes are predicted significantly better than random expectation. In contrast, genes whose disruption decreases 
population co-efficient of variance (CV) were not predictable. (a) A histogram plotting the distribution of the area under the receiver operating 
characteristic (ROC) curve (AUC) values for 562 quantitative morphological phenotypes shows a significantly higher proportion of high AUC values than 
for 1,000 size-matched random gene sets. (b) Separate analyses of phenotypes associated with morphologic features and phenotypes associated with cell-
to-cell variability in the morphologic features reveals asymmetry in predictability. Sets of genes whose disruption causes the 40 largest or smallest mean 
values of a morphological feature (middle plots) are significantly more predictable than random gene sets (left side). By contrast, although the sets of genes 
whose disruption most increase the CV tend to be predictable (high AUC), those that most decrease the CV are not (low AUC). Box-and-whisker plots 
are drawn as in Figure 3. (c) A comparison of the median phenotypic CVs observed for deletion strains versus replicate analyses of wild-type cells shows 
that deletion strains with the most reduced CVs are essentially wild-type-like in character, whereas those with the most increased CVs show significantly 
more cell-to-cell variability than wild-type cells. These latter knockout strains carry deletions for genes predominantly involved in maintaining genomic 
integrity. This trend is therefore likely to have arisen from nonclonal genetic variation in these strains, recapitulating the classic mutator phenotype.
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Figure 9 (see legend on previous page)
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To explore this observation further, for each of the 4,718 yeast
genes in the SCMD data set, we calculated the median percen-
tile rank across each of the 220 SCMD CV phenotypes. Thus,
the gene whose deletion strain has the highest median per-
centile rank (the telomere length regulation gene EST1;
median percentile rank of 0.98) exhibits the greatest cell-to-
cell variability across nearly all of the set of 220 CV pheno-
types. By contrast, the gene whose deletion strain has the low-
est median percentile rank (YAL004W, a small open reading
frame that overlaps the coding sequence for the heat shock
protein 70 family chaperone SSA1; median percentile rank
0.17) consistently exhibits the lowest cell-to-cell variability
for the tested phenotypes. Thus, these rankings capture the
generic tendency for a gene to increase or decrease cell-to-cell
variability across many measured morphology parameters.
We tested the top-ranked 40 genes and the bottom-ranked 40
genes for their network-based predictability.

As with our earlier observations, the top-ranked 40 genes
(those with highest median percentile rank) exhibit reasona-
ble predictability (AUC = 0.71), whereas the bottom-ranked
40 genes exhibit random predictability (AUC = 0.49). Thus,
either on a phenotype-by-phenotype basis, or across all 220
phenotypes, genes whose disruption most increased morpho-
logic phenotypic variability tended to be more predictable
and functionally coherent than those that reduced phenotypic
variability. An examination of the functions of the top-ranked
40 genes suggested a possible explanation. The top-ranked
set show strong enrichment for specific GO terms, with 17 of
the 40 genes encoding nuclear proteins (P < 10-6; measured
using FunSpec [49]); ten of these are DNA-binding proteins
(P < 10-4), including genes of DNA recombination and repair
(P < 10-6). Among these genes are many that are involved in
maintaining genomic stability, including the repair/recombi-
nation proteins RAD27, RAD50, RAD51, RAD52, CTF4,
HEX3, RTT109, and THP1, the histone HTZ1, and the tel-
omere maintenance protein EST1. Thus, although deletions
of these genes may possibly increase phenotypic variation, a
more likely possibility is that these particular strains in the
yeast deletion collection have accumulated genetic variation
and are no longer clonal, as we discuss below.

The functional network predicts yeast orthologs of 
human disease genes
The network's effectiveness at predicting both qualitative and
quantitative yeast phenotypes suggests the possibility of
application to other organisms, such as for predicting human
disease genes. We tested the potential of this approach by
examining the power of the yeast network to predict yeast
orthologs of human disease genes, focusing on all human dis-
eases listed in the Online Mendelian Inheritance in Man
(OMIM) disease database [51], for which at least four yeast
orthologs existed in YeastNet. We observed strong predicta-
bility for the majority of the 28 human diseases that could be
tested in this manner, as shown in Figure 10. Not only are
many of the yeast orthologs of these disease genes predicta-

ble, but also the median predictive accuracy of these pheno-
types is even slightly higher than the genome-wide yeast
phenotypes (Figure 3). This is a probable reflection of the fact
that genes conserved between yeast and humans generally
compose core cellular machinery, well captured by the gene
network. For example, the most predictable disease we
observed (AUC = 1.0) was leukoencephalopathy with vanish-
ing white matter, arising as the result of mutations in any of
the subunits of the translation initiation factor EIF2B. Like-
wise, we observed strong predictability for hemolytic anemia
(AUC = 0.89), which involves 11 ortholog groups, involved in
glycolysis and glutathione metabolism, which are linked pri-
marily by co-expression and co-citation, with only a few phys-
ical interaction-based linkages.

Yeast genes with human orthologs linked to the same diseases are predicted better than random expectationFigure 10
Yeast genes with human orthologs linked to the same diseases are 
predicted better than random expectation. Predictability is measured as 
the area under a receiver operating characteristic (ROC) curve (AUC), as 
in Figure 3, measuring the AUC for each of 28 human diseases reported in 
the Online Mendelian Inheritance in Man (OMIM) disease database [51] 
that have four or more yeast orthologs annotated in the yeast function 
network and plotting the resulting AUC distributions. Real disease gene 
sets are significantly more predictable than size-matched random gene sets 
drawn from the set of yeast-human orthologs. Box plots are drawn as in 
Figure 3.
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Although this test was limited to diseases involving biologic
processes shared between human and yeast, these results
support the notion that an integrated human functional net-
work would guide the discovery of new disease genes. Because
we observe strong disease predictions both from protein
complexes (as in leukoencephalopathy) and pathways (as in
hemolytic anemia), it appears likely that a functional human
gene network might offer strong predictions for genes associ-
ated with diverse human diseases, even in the absence of
genetic linkage data.

Discussion
Just as functional networks propagate known functional
annotations to un-annotated genes, phenotype prediction via
GBA is limited to propagating known phenotypes. Therefore,
an initial seed set of genes is required, such as might result
from a genetic screen for the phenotype of interest, before
being able to apply the network in order to identify more such
genes. We might also expect genes in the same pathway often
to exert inverse effects on a phenotype, acting either as acti-
vators or repressors. Nonetheless, we demonstrate that GBA
can successfully be applied to identify genes that give rise to
similar loss-of-function phenotypes. Furthermore, network-
guided phenotype prediction can be used to extend a genetic
screen in a targeted manner by providing a ranked list of
potential candidates for evaluation. In principle, the screen
might be expanded by adding the newly identified genes to
the seed set and iterating the prediction and testing.

In particular, large-scale reverse genetic screens using yeast
mutant strain collections have become increasingly common
[52]. However, these assays often suffer from high false neg-
ative rates, not least by virtue of screening libraries of limited
scope (for example, screening only the nonessential or essen-
tial genes). Such partially genome-wide screens can benefit by
following up the initial screen with focused screening (or re-
screening) of prioritized candidate genes. In order to facilitate
such efforts, we have created a web server [53] that allows
interactive analysis of a seed gene set, performing ROC anal-
ysis to assess the predictability of the phenotype, then return-
ing a ranked list of candidate genes that are most likely to
share the same loss-of-function phenotype.

Note that we have focused here on predicting loss-of-function
phenotypes because of the large number of genome-wide
screens available; it is not clear that gain-of-function pheno-
types will be similarly predictable. However, the recent con-
struction of yeast over-expression libraries [54-56] should
soon allow testing of network-based prediction of such
phenotypes.

Why are loss-of-function phenotypes predictable?
Our findings indicate that typical phenotypes represent spe-
cific enough defects that they are predictable based upon the
genes' functional associations. We observe multiple mecha-

nisms for how loss of different genes leads to disruption of the
same phenotypically relevant process, primarily participation
in the same protein complex or membership in the same bio-
logic pathway. These results are consistent with the partial
predictability of human disease from protein complex
membership [40,41] and of the prediction of knockout phe-
notypes of annotated yeast genes on the basis of pathway
annotation [42], which we illustrate with the following con-
trasting examples from among our predictions. In Figure 5b,
the proteins ANP1, MNN9, MNN10, MNN11, VAN1 are mem-
bers of the same α-1,6-mannosyltransferase protein complex.
Chitin accumulates when the function of the complex is
disrupted by the loss of any one of the five members [33]. In
contrast, in Figure 5c the three genes THR1, THR4, and
HOM6 are involved in the biochemical pathway that converts
homoserine to threonine. These genes are linked in the func-
tional network [24] by virtue of the coordinate expression of
their bacterial homologs in operons (for example, as for the
Bacillus subtilis homologs ThrB, ThrC, and ThrA), even
though there is as yet little evidence that they belong to the
same physical complex. The loss of any of the three genes dis-
rupts the threonine synthesis pathway and leads to reduced
growth after five generations in threonine-depleted media
[4]. The functional gene network, which combines both phys-
ical and functional interactions, predicts both classes of phe-
notypes effectively, whether resulting from disruption of
physical complexes or pathways.

Nevertheless, some phenotypes are not significantly predict-
able. Three likely causes exist. First, poor predictability may
result from using genome-wide screens with high false posi-
tive rates, which would base predictions on incorrectly iden-
tified seed sets. We sought to minimize this type of error by
adopting stringent thresholds for each phenotype. Second,
incomplete screens (such as by not testing the essential
genes), high false negative rates, and the stringent phenotype
thresholds that we selected could lead to a large number of
positive examples being excluded from the seed sets. Such
omitted positive examples scoring higher than seed genes
would artificially depress prediction accuracies. Third, unpre-
dictable phenotypes could in principle arise from the disrup-
tion of functionally unrelated genes. In order to test this, we
compared the GO enrichment for the 25 most predictable
phenotypes with the 25 least predictable phenotypes. For
each phenotype, we identified the GO term with the most sig-
nificant enrichment of genes annotated with the term, meas-
ured using the hypergeometric distribution. Using a
significance threshold of P < 10-7, we find that 18 of the 25
highly predictable phenotypes are significantly enriched for
at least one GO annotation, as compared with only two of the
25 poorly predictable phenotypes. This suggests that poorly
predictable phenotypes largely result from sets of genes with
little functional coherence.
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AUC is a useful measure of gene functional coherence
By definition, the GBA approach we present predicts pheno-
types associated with functionally coherent sets of genes, pre-
sumably reflecting the clustering of the genes in the
functional network. Such predictability, which we specifically
measure as the AUC, can therefore be regarded as a direct
estimate of the functional coherence of the seed gene set.
Thus, beyond simply evaluating phenotype prediction, the
AUC offers an additional measure of functional coherence
that complements other existing measures, such as the
enrichment of GO annotations or other biologically meaning-
ful sets of genes (as calculated by FunSpec [49] and Database
for Annotation, Visualization, and Integrated Discovery [57]).
For example, the five genes giving rise to the branched cell
phenotype are connected by six linkages in the network (AUC
= 0.87), but only a single pair shares any GO annotation (P <
0.001, for the GO term 'transcription from RNA polymerase
II promoter'). The network-based AUC measure for func-
tional coherence exploits the massive unbiased data
integration of functional networks, extending well beyond
known annotations, and allows estimates of functional
coherence even among unannotated genes or those spanning
multiple systems.

In principle, the AUC approach can therefore measure the
functional coherence of genes that annotation-based
methods will miss. Beyond un-annotated genes, the AUC-
based estimate of functional coherence might also work effec-
tively when the genes under study span multiple functional
categories; each category may be only partially enriched and
therefore may otherwise be missed for lack of signal. The
functional network, however, considers pair-wise linkages,
not predetermined categories, and so it has the potential to
identify linked genes across multiple annotation categories.

Recapitulation of the classic mutator phenotype in the 
yeast knockout collection
We observed a strikingly higher predictability for mutations
that increased cell-to-cell phenotypic variation versus those
that decreased it. The deletion strains exhibiting higher CVs
tended to be consistent across the complete set of CV pheno-
types examined, with the deleted genes showing strong
enrichment for functions related to DNA repair,
recombination, and genomic stability. Note that strains with
the lowest CV phenotypes exhibited neither predictability nor
functional enrichment; in fact, the CVs exhibited by these
strains were similar to those observed for replicate analyses of
wild-type cells (Figure 9c). This suggests that the strains that
most decreased cell-to-cell variation were essentially wild-
type-like in this regard.

This outcome is consistent with a recapitulation in the yeast
deletion strain collection of the classic mutator phenotype.
The mutator phenotype was originally observed in DNA
repair mutants; such mutants accumulated mutations so rap-
idly that they showed high variability in colony sizes when

grown on Petri dishes, high variability in cell morphologies,
high rates of plasmid loss, and increased spontaneous muta-
genesis (for example, as previously observed for RAD27 and
RAD52 deletion mutants [58,59]). The most likely
explanation is therefore that strains in the deletion collection
harboring deletions in genes related to genomic stability have
simply accumulated mutations at a higher rate. A mixed
population, no longer clonal, would be expected to exhibit
more cell-to-cell variation than other deletion strains, which
would accumulate mutations at a lower rate. Thus, we suspect
that our phenotypic analysis is correctly revealing the func-
tional signature of a legitimate phenotype inadvertently cap-
tured in the process of distributing and passaging the yeast
deletion strain collection.

Applying network-based phenotype prediction to 
humans and other organisms
In principal, the approach we describe could be applied to any
organism, using functional network data if available or, in the
absence of such data, using physical interaction data, such as
available protein interaction networks for fly [60], worm [61],
or human [25,62-66]. In the absence of an integrated func-
tional gene network or protein interaction network, we expect
that networks of mRNA co-expression associations, such as
can be derived from DNA microarray data, would provide
some utility for phenotype prediction. Such data are a major
contributor to functional gene networks (for examples, see
[13,16,17]) and are relatively easily generated from available
data for most model organisms.

In particular, application of this approach in humans may
allow directed identification of disease genes. Indeed, func-
tional linkages derived largely from known GO annotation
[67] or protein interactions [40] have shown some utility for
prioritizing positional candidate genes from genome-wide
linkage screens. However, our results show that across a wide
range of yeast phenotypes and human diseases the associated
genes (or their yeast orthologs) can be directly identified even
in the absence of supporting genetic loci data. In order to
apply our approach to human diseases, genes that are known
to be associated with a particular disease, such as found from
twin or genome-wide association studies, would form the
seed set. Additional candidate genes that are likely to be asso-
ciated with that disease could then potentially be identified or
prioritized based upon their network connections to the seed
set, using the GBA principle. Potential disease genes could
then be tested in disease model systems or screened geneti-
cally in a focused manner. Such a directed approach would
exploit the tremendous existing body of knowledge about
protein interactions and functional pathways.

Conclusion
We have demonstrated that yeast gene loss-of-function phe-
notypes are broadly predictable from connectivity in a func-
tional gene network, with examples presented spanning a
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wide range of cell growth, cell morphology, metabolite trans-
port, chemical sensitivity, and molecular phenotypes. We
demonstrate that this predictability can be used to extend
genetic screens in a directed fashion, and that this approach
might therefore be important in organisms for which genetics
is difficult. We suggest that a similar approach in humans
might enable the directed discovery of disease genes.

Materials and methods
Assembling the set of nonredundant loss-of-function 
phenotypes
A literature search was conducted to find genome-scale stud-
ies of yeast gene knockout phenotypes. Datasets were com-
piled from studies that systematically examined a large
fraction of the yeast genome. No effort was made to minimize
redundancy among the gene sets themselves. Nonetheless,
only one set is a strict subset of another (genes that have
changed levels of transposon cDNA upon knockout are a sub-
set of the genes that reduce retrotransposition). Most studies
were conducted using one or more of the following strain
collections: haploid, homozygous diploid or heterozygous
diploid [4], or tetracycline titratable [47]. The reported data
were a mix of qualitative, pseudo-quantitative, and quantita-
tive results. Pseudo-quantitative data (often reported as '+',
'++', '-', '--', and so on) were thresholded at the most stringent
reported value (except for the small set of genes conferring
the phenotype 'branched cells' [4]; all genes with this mor-
phology were included). Quantitative data were arbitrarily
thresholded using cut-offs that appeared consistent with the
sensitivity of the assay. Predictability was not used as a crite-
rion for selecting thresholds. In some cases, thresholds less
stringent than those selected result in more predictable phe-
notype sets (data not shown). In cases in which an uncharac-
terized open reading frame overlapped a known gene on the
chromosome and both shared the same phenotoype (for
instance, Axial budding [68]; the dubious open reading frame
YOR300W overlaps BUD7), the uncharacterized gene was
removed from the phenotype set. Additional phenotypes were
collected from the SGD stabase [69]; phenotypes extracted
from SGD used the threshold determined by SGD. The com-
plete set of 100 phenotypic seed sets is provided as Additional
data file 1.

For the 281 quantitative phenotypes reported by SCMD [50],
the 40 knockout strains with either the highest or lowest val-
ues for each SCMD feature were selected (resulting in 562
seed gene sets). Similarly, 440 CV phenotypes were generated
by considering the 40 knockout strains with either the higher
or lowest CV for each SCMD CV feature (220 total features).

Prediction of phenotypes and evaluation of prediction 
quality
For each gene in the network, we calculated the sum of its link
weights to genes with the phenotype in question (the seed
set), namely assigning each gene i the following score:

Where j is a gene in the seed gene set and LLSij is the log like-
lihood score for the linkage between genes i and j, as reported
by Lee and coworkers [24], except where explicitly analyzing
other networks. Genes were then rank-ordered by their Si

scores, with the highest scoring genes being the ones most
likely to share the phenotype with the seed set. For networks
reporting only binary linkages (MIPS [44] and DIP [45]), we
considered all linkages to be of weight 1. For calculation of
Figure 5, YeastNet v. 2, DIP and Probabilistic Integrated Co-
complex (PICO) [29] were each evaluated at two different
confidence levels. For analyses of protein interaction net-
works, the following networks were analyzed: YeastNet v. 2,
which corresponds to all interactions reported by Lee and
coworkers [24]; physical protein interactions (PPIs) from the
DIP [45] (downloaded on 4 February 2007), selecting as the
core set those interactions reported by Deane and coworkers
[70]; the network reported by Collins and colleagues [43],
using their reported threshold; PICO E-0 and E-2 networks,
which are PPI sets from Hart and coworkers [29]; and MIPS,
including all PPIs in physical complexes reported by Hart and
coworkers [29], derived from the work reported by Guldener
and colleagues [44]. In all cases, self interactions were
removed.

For each phenotype, the predictability was evaluated by gen-
erating a ROC curve based upon the gene ranking and
calculating the AUC. The ROC curve indicates the relative rate
of true and false positive predictions as a function of the score
Si, plotting the true positive rate (TP/[TP + FN]) versus false
positive rate (FP/[FP + TN]). In calculating Si, self-self links
were not permitted, and each gene in the seed set was
withheld in turn from the seed set for evaluation (leave-one-
out cross-validation). TP was defined (for a specific thresh-
old) as the number of genes from the seed set ranked above a
given Si. FP was defined as the number of genes above the
threshold but not in the seed set. FN was defined as the
number of seed genes ranked below the threshold. Finally, TN
was defined as the number of nonseed genes ranked below
the threshold.

The AUC ranges from 0 to 1, with 0.5 indicating random per-
formance and 1.0 indicating perfect classification. Note that
the AUC is calculated using only seed genes represented in
the network (the network is not penalized for partial coverage
of the seed set), allowing the predictive capacity of networks
of differing sizes to be compared. For the purposes of calcu-
lating a ROC curve, all genes not linked to the phenotype seed
set were treated as being of the same rank. Note that none of
the phenotypes have been tested for all genes (most tested
only non-essential genes). Because of ambiguities in the
reporting of genes tested, ROC curves for the set of 100 phe-
notypes were calculated over the entire set of yeast genes in

S LLSi ij

j seed

=
∈
∑
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the network being tested (5,483 genes for the functional net-
work). Thus, the measures of predictability (AUC) are likely
to be underestimates, because all untested genes are consid-
ered false positives.

As an alternative test for functional enrichment, we used
ArrayPlex [71] to calculate the hypergeometric probability of
the enrichment for each GO annotation within a given gene
set.

Prediction of human disease gene sets
For the test of human disease gene prediction, we collected
sets of yeast genes whose human orthologs were linked to the
same OMIM disease [51]. Human disease phenotypes from
OMIM were collapsed into major categories (variants of each
disease were collapsed into a single category, such as collaps-
ing 'Cataract, polymorphic and lamellar' and 'Cataract, crys-
talline aculeiform' into a single category of cataract defects).
Each human disease gene was mapped to one of 2,151 human-
yeast orthology groups using Inparanoid [72], and seed sets of
yeast genes linked to the same disease were selected such that
at least four of the yeast genes were present in YeastNet.
Calculation of predictability and measurement of AUC was
performed as for yeast phenotypes, considering linkages in
YeastNet between human-yeast orthology groups rather than
between individual yeast genes.

Generation of random phenotype sets
In order to estimate the random distribution of AUC scores
for literature phenotypes, sets of genes of the same sizes as
the real phenotype seed sets were drawn from the complete
set of yeast genes and tested for predictability, using as the
background set of genes those designated by SGD as 'verified'
or 'uncharacterized' (not dubious or pseudogenes; as of 29
January 2007). For SCMD morphology phenotypes [50],
1,000 sets of 40 genes were drawn randomly from the com-
plete set of genes analyzed by SCMD, and then tested for pre-
dictability in order to generate the null expectation for the
AUC distribution. For human disease phenotypes, random
gene sets were generated for comparison by randomly draw-
ing from the set of network annotated human-yeast orthologs
such that the set size distribution of the random sets matched
the size distribution of the actual OMIM disease seed sets.

Yeast strains, media, and growth
For predicting elongation mutants, we employed a seed set of
77 nonessential genes identified by Giaever and coworkers [4]
as 'Elongate 3' in a screen of the homozygous diploid yeast
deletion collection. Using GBA with this seed set, we pre-
dicted additional genes likely to give rise to elongated cells,
and selected for assay the 35 top-ranked essential genes with
strains available in the tetracycline downregulatable library
of yeast strains [47]. A negative set of 17 strains from the same
library was randomly selected from those genes not linked to
any of the known elongated genes. The corresponding strains
were obtained from Open Biosystems (Huntsville, Alabama,

USA). Each strain was grown to saturation at 30°C in rich
media (yeast extract/peptone/dextrose (YPD), inoculated
into fresh YPD with 10 ng/ml doxycycline, grown 16 hours,
and imaged [47] to evaluate cell morphology. Two biologists
evaluated the images for each strain (with strain names
hidden) for elongated cell morphologies using a simple qual-
itative scoring scheme (0 to 2), assigning a final score to each
strain as the sum of the independent evaluations. Strains
scoring more than 2 were selected as elongated, which mini-
mized false positives, yet recovered NUT2, previously
reported to be elongated [47].

Abbreviations
AUC, area under the curve; CV, coefficient of variance; DIP,
Database of Interacting Proteins; FN, false negative; FP, false
positive; GBA, guilt-by-association; GO, Gene Ontology;
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OMIM, Online Mendelian Inheritance in Man; PICO, Proba-
bilistic Integrated Co-complex; ROC, receiver operating char-
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true positive.
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